

(12) United States Patent

Jones et al.

(54) TECHNIQUES AND SYSTEMS FOR SUPPORTING PODCASTING

(71) Applicant: **Apple Inc.**, Cupertino, CA (US)

Inventors: **Anne Jones**, Emerald Hills, CA (US);

Thomas Dowdy, Sunnyvale, CA (US); Jeffrey Robbin, Los Altos, CA (US); Mike Wiese, Cupertino, CA (US); Stephen Davis, Los Gatos, CA (US)

(73) Assignee: Apple Inc., Cupertino, CA (US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 0 days.

This patent is subject to a terminal dis-

claimer.

(21) Appl. No.: 14/029,436

(22)Filed: Sep. 17, 2013

Prior Publication Data (65)

> US 2014/0026049 A1 Jan. 23, 2014

Related U.S. Application Data

(63) Continuation of application No. 13/552,390, filed on Jul. 18, 2012, now Pat. No. 8,561,893, which is a continuation of application No. 13/207,361, filed on Aug. 10, 2011, now Pat. No. 8,245,924, which is a

(Continued)

(51) **Int. Cl.**

G06F 17/00 (2006.01)G06F 3/048 (2013.01)

(Continued)

(52) U.S. Cl.

CPC G06F 3/048 (2013.01); G06F 17/30899 (2013.01); H04L 67/06 (2013.01); H04L 67/26

(2013.01)

US 9,104,289 B2 (10) **Patent No.:**

(45) **Date of Patent:** *Aug. 11, 2015

(58)Field of Classification Search

IPC G07F 7/1008; G06Q 20/341,30/02; G06K 7/10881, 7/10851

See application file for complete search history.

(56)References Cited

U.S. PATENT DOCUMENTS

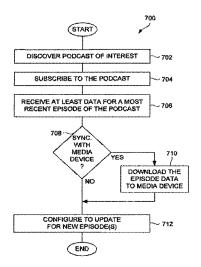
8/1998 Glaser et al. 5.793.980 A 6,597,891 B2 7/2003 Tantawy et al. (Continued)

FOREIGN PATENT DOCUMENTS

JP	2002-334266	11/2002
JP	2005-507130	3/2005
WO	WO 01/25948	4/2001

OTHER PUBLICATIONS

Hammersley, Ben, "Content Syndication with RSS," O'Reilly, Mar. 2003.


(Continued)

Primary Examiner — Karl D Frech (74) Attorney, Agent, or Firm — Fish & Richardson P.C.

ABSTRACT (57)

Improved podcasts and techniques that facilitate their use are disclosed. The improved techniques can pertain to creating, publishing, hosting, accessing, subscribing, managing, transferring, and/or playing podcasts. According to one aspect, a client application can subscribe to podcasts and then automatically monitor the podcasts for updates to be downloaded. In the event that user interest in a podcast becomes inadequate, downloading of further updates can be restricted. According to another aspect, a podcast can be subscribed to through use of a portable subscription file. According to still another aspect, podcast feeds can be enhanced to include segment elements and other metadata.

21 Claims, 23 Drawing Sheets

Related U.S. Application Data

continuation of application No. 12/477,820, filed on Jun. 3, 2009, now Pat. No. 8,020,762, which is a continuation of application No. 11/166,331, filed on Jun. 25, 2005, now Pat. No. 7,686,215.

(60) Provisional application No. 60/683,056, filed on May 21, 2005.

(51) Int. Cl. H04L 29/08 (2006.01) G06F 17/30 (2006.01)

(56) References Cited

U.S. PATENT DOCUMENTS

6,782,552	B1	8/2004	Stiegler et al.
6,928,433	B2	8/2005	Goodman et al.
7,020,704	B1	3/2006	Lipscomb et al.
7,686,215	B2	3/2010	Jones et al.
7,788,248	B2	8/2010	Forstal et al.
8,020,762	B2	9/2011	Jones et al.
8,245,924	B2	8/2012	Jones et al.
8,646,687	B2 *	2/2014	Jones et al 235/380
2003/0105589	A1	6/2003	Liu et al.
2003/0149574	$\mathbf{A}1$	8/2003	Rudman
2003/0163823	$\mathbf{A}1$	8/2003	Logan et al.
2003/0182139	A1	9/2003	Harris et al.
2004/0088328	$\mathbf{A}1$	5/2004	Cook et al.
2005/0065912	$\mathbf{A1}$	3/2005	Cafrelli et al.
2005/0071780	A1	3/2005	Muller et al.
2005/0091107	$\mathbf{A}1$	4/2005	Blum
2005/0108754	A1	5/2005	Carhart et al.
2006/0129907	A1	6/2006	Volk et al.
2006/0190616	$\mathbf{A}1$	8/2006	Mayerhofer et al.
2006/0248209	Al	11/2006	Chiu et al.

OTHER PUBLICATIONS

Sandler et al., "FeedTree: Sharing Web Micronews with Peer-to-Peer Event Notification", Peer-to-Peer Systems IV 4th International Workshop, IPTPS 2005, Feb. 25, 2005, pp. 141-151.

"iPod User's Guide", XP002401535, Retrieved from Internet on Oct. 29, 2006 at URL http://manuals.info.apple.com/en/iPod_OriginalUserGuide.pdf, pp. 1-34.

"iPodder—the cross-platform podcast receiver", Retrieved from the Internet on May 20, 2005, XP002409911, at URL http://web.archive.org/web/20050520011817/http://sourceforge.net/proj ect/showfiles.php?group_id=118306&package_id=131038&release_id=328481, pp. 1-3.

Chorianopoulos et al., "Cross Media Digital Rights Management for Online Music Stores", Automated Production of Cross Media Content for Multi-Channel Distribution, 2005, First International Conference on Florence, Italy 30-02 Nov. 2005, Piscataway, NJ, USA, IEEE, XP010892461, Nov. 30, 2005, pp. 257-260.

"Podcatcher—A podcast download tool", Retrieved from the Internet on May 7, 2005, XP002397123, at URL http://groups.google.de/group/fm.announce/browse_thread/thread/

4ea78662d6461739/2d6658621b490071?lnk=st&q=&rnum=1 &hl=de#2d6658621b490071 (the whole document).

Nayota Ito, "Let's Begin RSS" UNIX User vol. 13, No, 3, Japan, Softbank Publishing Corp., Mar. 1, 2004, vol. 13, pp. 80-90.

"Reading blog, recording program, etc., how to make use of iPod other than for music", Click, NIKKEI BP, May 12, 2005, vol. 12, No. 6, p. 87-89.

"Desktop improvement committee, Next move for better use of Fedora Core, Desktop improvement plan 2005", Linux magazine, ASCII Co. Ltd., Mar. 1, 2005, vol. 7, No. 3, p. 20-31.

Anonumous, "What is iPodderX," retrieved from the Internet, Oct. 31, 2004, pp. 1-2.

Adam Curry, ipodder.org screen shots, Sep. 21, 2004.

Partial Search Report dated Sep. 18, 2006 from International Application No. PCT/US2006/017955.

Partial Search Report dated Oct. 20, 2006 from International Application No. PCT/US2006/017957.

Partial Search Report dated Oct. 20, 2006 from International PCT/ US2006/017768.

Office Action dated Nov. 22, 2006 from U.S. Appl. No. 11/166,333. International Search Report Dec. 19, 2006 from International Application No. PCT/US2006/017955.

Search Report from dated Dec. 19, 2006 International PCT/US2006/017768.

Search Report dated Dec. 19, 2006 from International Application No. PCT/US2006/017957.

Written Opinion from dated Dec. 19, 2006 from International Application No. PCT/US2006/017957.

Written Opinion dated Dec. 19, 2006 from International Application No. PCT/US2006/017955.

Written Opinion dated Dec. 19, 2006 from International Application No. PCT/US2006/017768.

Search Report dated Dec. 21, 2006 from International Application No. PCT/US2006/017957.

Office Action dated May 3, 2007 from U.S. Appl. No. 11/166,333. Office Action dated Dec. 10, 2007 from U.S. Appl. No. 11/166,333. Examination Report dated Mar. 14, 2008 from European Application No. 06 759 342.6.

Examination Report dated Mar. 14, 2008 from European Application No. 06 759 421.8.

Office Action dated Aug. 1, 2008 from U.S. Appl. No. 11/166,332.

Office Action dated Nov. 25, 2008 in U.S. Appl. No. 11/166,332. Office Action dated Feb. 19, 2009 in U.S. Appl. No. 11/166,333.

Office Action dated May 8, 2009 from U.S. Appl. No. 11/166,332.

Office Action dated May 15, 2009 from Chinese Patent Application No. 200680022102.7.

Office Action dated Aug. 5, 2009 from U.S. Appl. No. 11/166,332. Office Action dated Aug. 14, 2009 from Chinese Patent Application No. 200680021898.4.

Office Action dated Nov. 3, 2009 from European Application No. 06 $759\ 421.8.$

Office Action dated Nov. 4, 2009 from European Application No. 06 $759\ 342.6$.

Office Action dated Jan. 22, 2010 from U.S. Appl. No. 11/166,332. Office Action dated Mar. 1, 2010 from U.S. Appl. No. 11/166,333.

Office Action dated Aug. 6, 2010 from U.S. Appl. No. 12/488,820. Final Office Action dated Dec. 23, 2010 from U.S. Appl. No. 12/488,820.

Office Action dated Feb. 28, 2011 from Japanese Application No. 2008-512342.

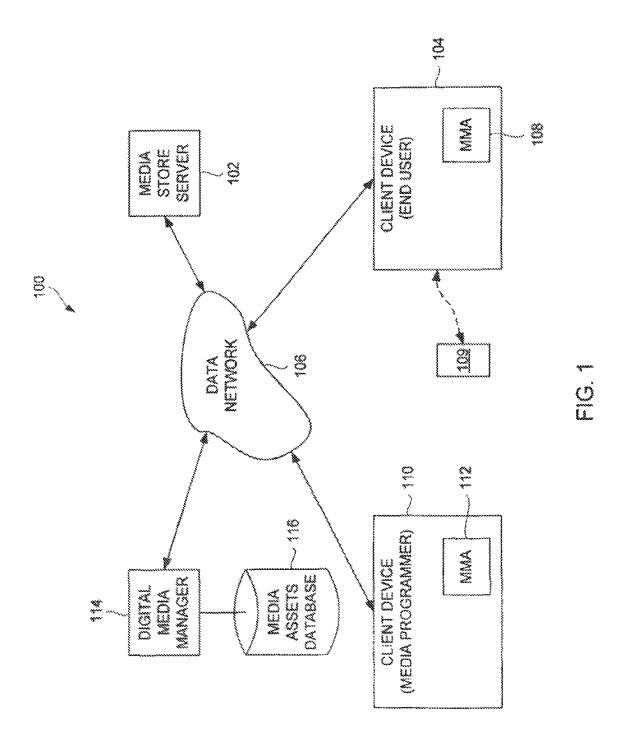
Notice of Grounds of Rejection dated May 13, 2011 from Japanese Application No. 2008-512349.

Notice of Allowance dated May 13, 2011 from U.S. Appl. No. 12/488,820.

"Armangil's podcatcher", Retrieved from the Internet on Aug. 31, 2006, at URL http://podcatcher.rubyforge.org, pp. 1-4.

"What is iPodderX", Retrieved from the Internet on Oct. 31, 2004, XP002401120, at URL http://web.archive.org/web/20041031000450/http://ipodderx.com, pp. 1-2.

Office Action dated Feb. 26, 2008 from U.S. Appl. No. 11/166,331. "Podcast Directory (iPodderX)," retrieved from the internet: http://web.archive.org/web/20041031090936/http://ipodderx.com/directory.


Examination Report from corresponding Application No. EP06759421.8-1952, dated Oct. 2, 2013; pp. 1-6.

iPodder 1.1 for Windows Manual, published Jan. 11, 2005, 8pp. Office Action in Ex Parte Reexamination for corresponding U.S. Appl. No. 90/012,766, dated Aug. 2, 2013; pp. 1-67.

Examination Report from Indian Patent Application No. 4867/KOLNP/2007, dated Mar. 12, 2014, 3 pages.

First Office Action in CN201210180777.1, mailed Nov. 4, 2014, 10

^{*} cited by examiner

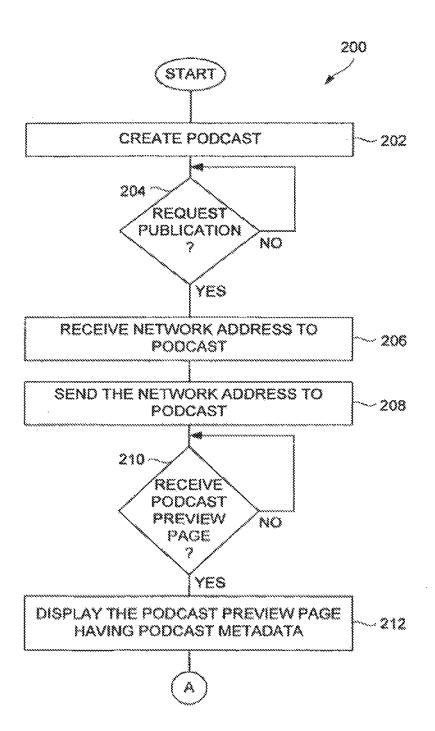


FIG. 2A

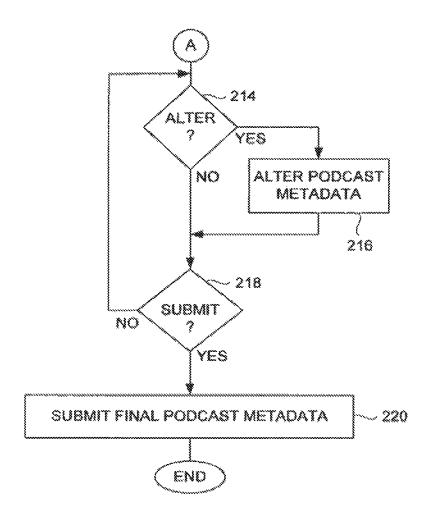


FIG. 28

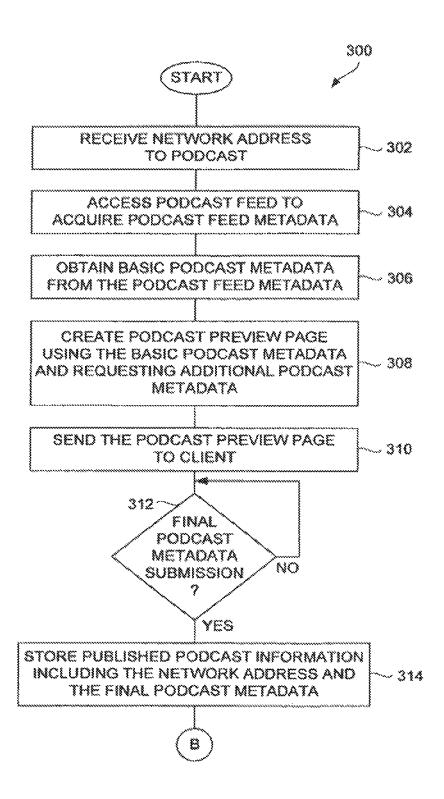


FIG. 3A

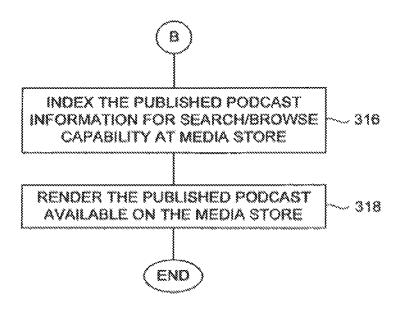


FIG. 38

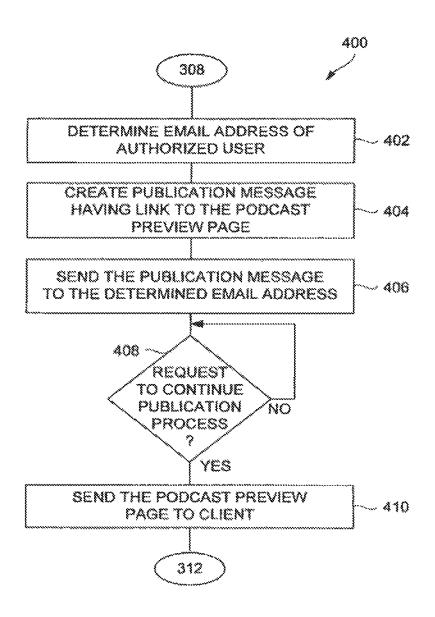
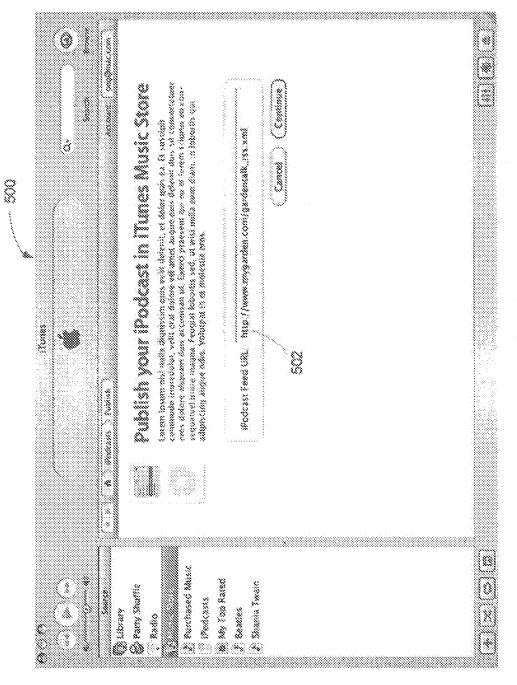
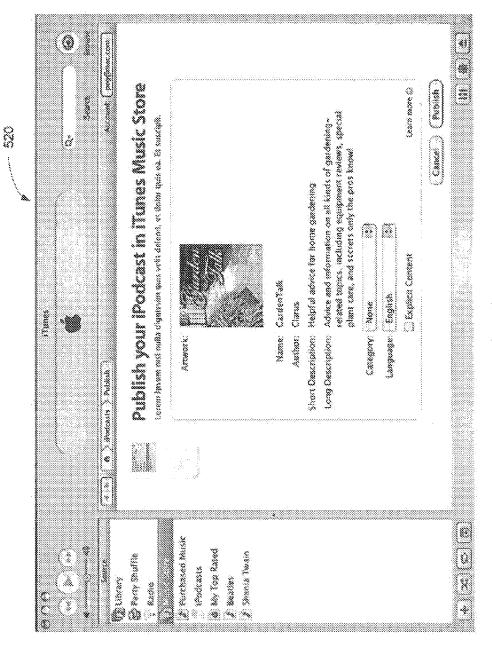




FIG. 4

S O I

E S S

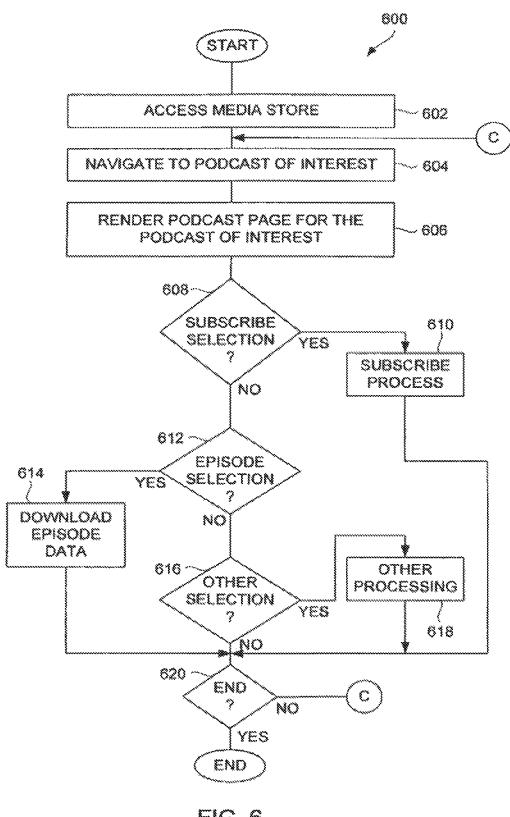


FIG. 6

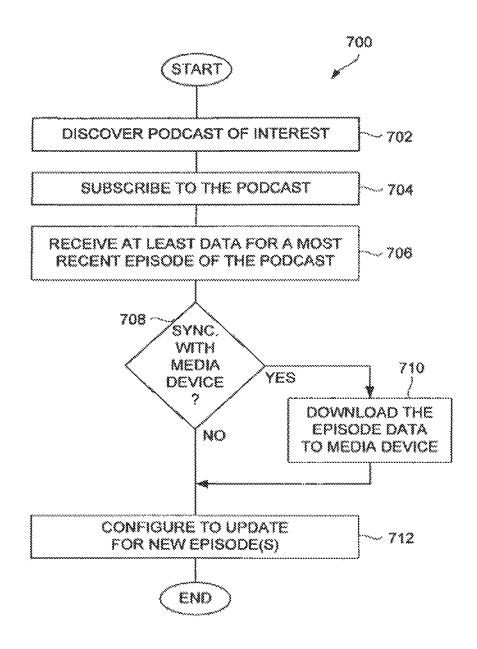


FIG. 7

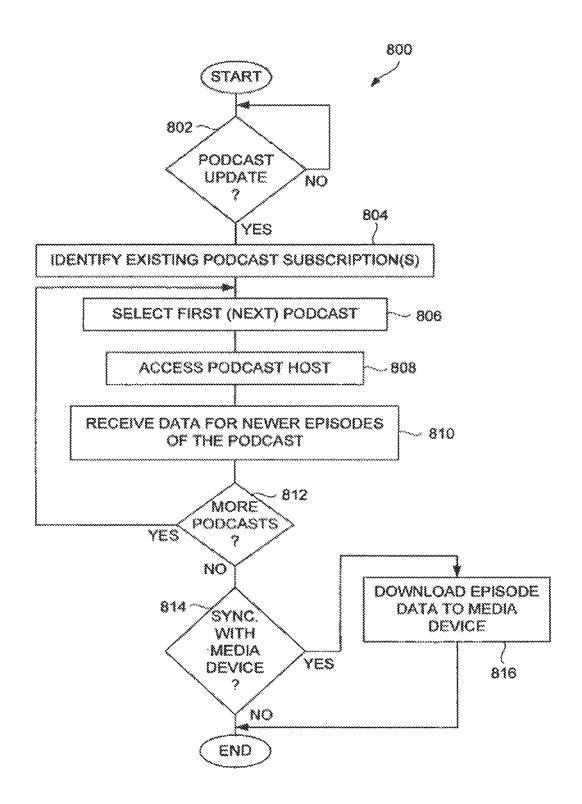
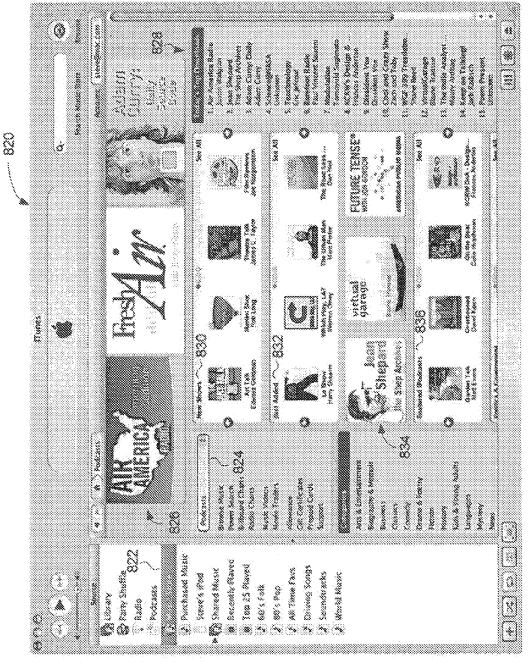
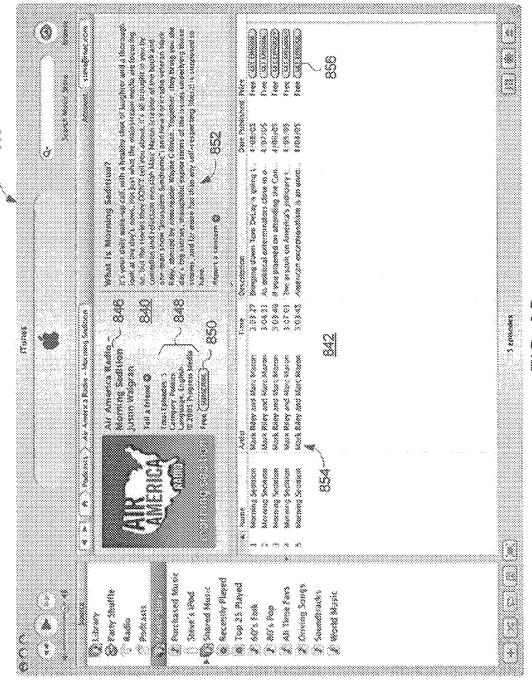




FIG. 8A

Aug. 11, 2015

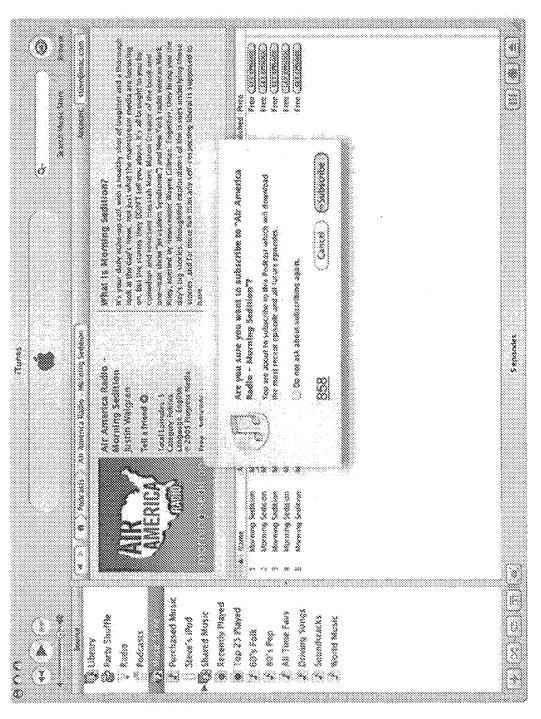
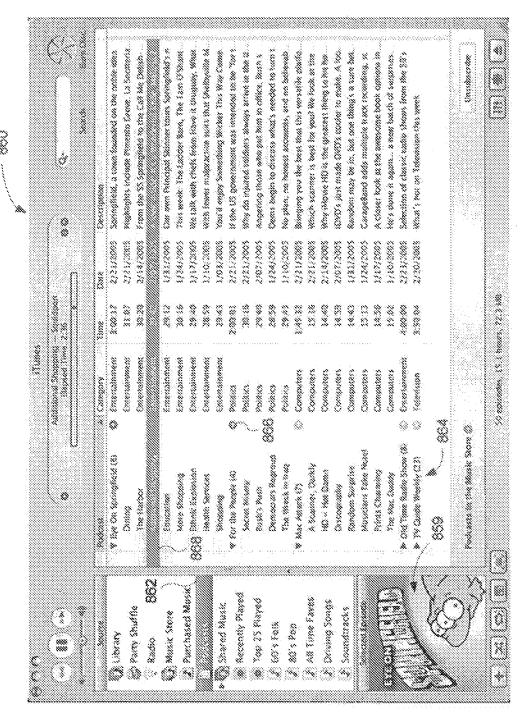
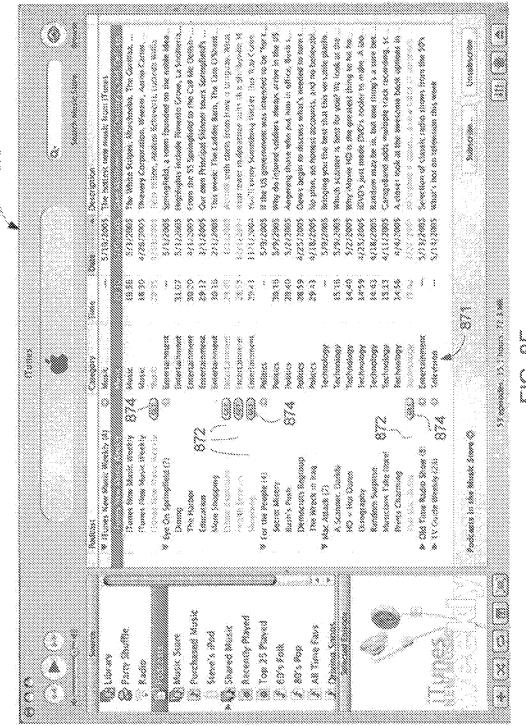
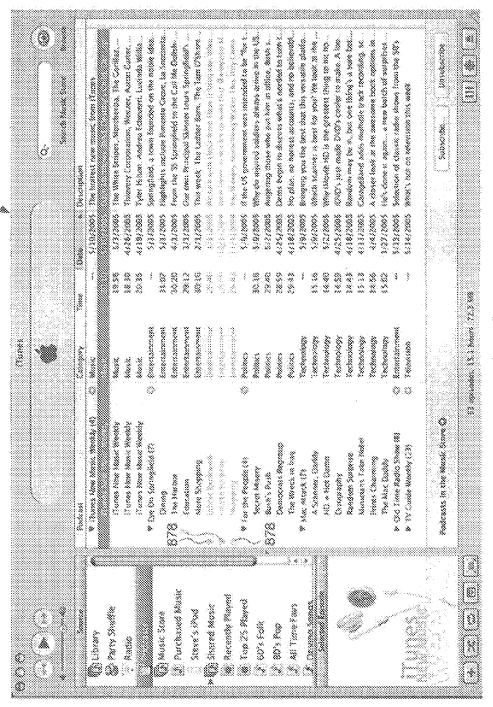





FIG. 80

0

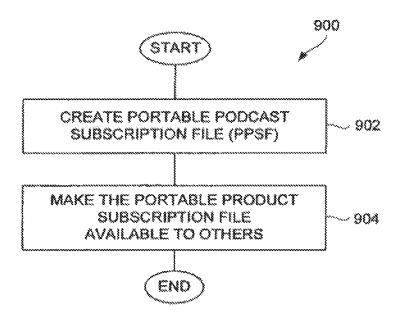


FIG. 9

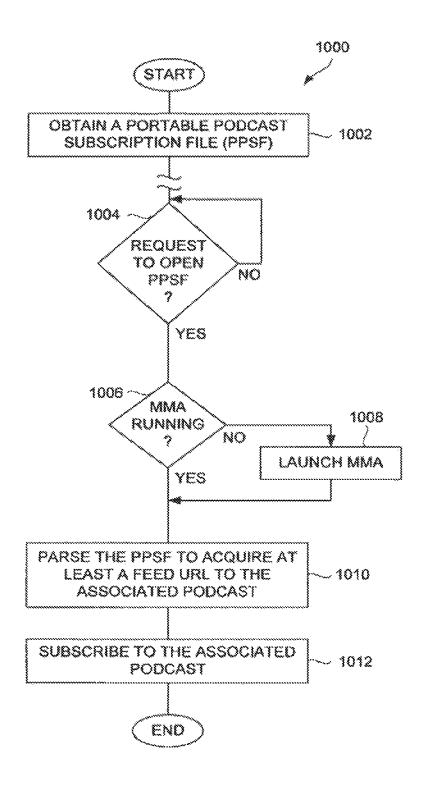


FIG. 10

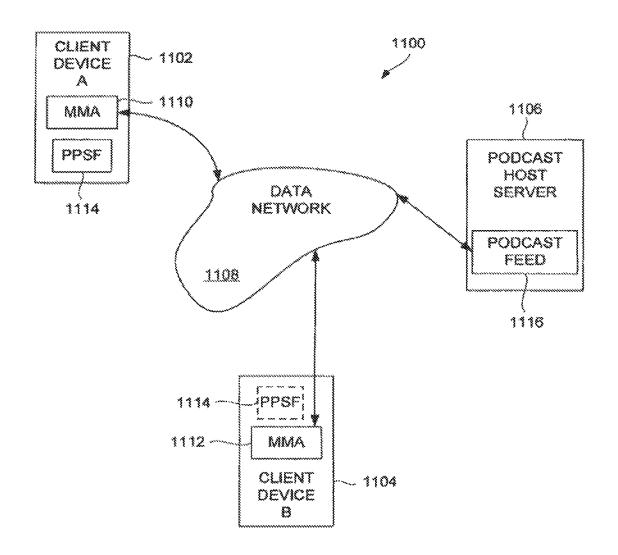
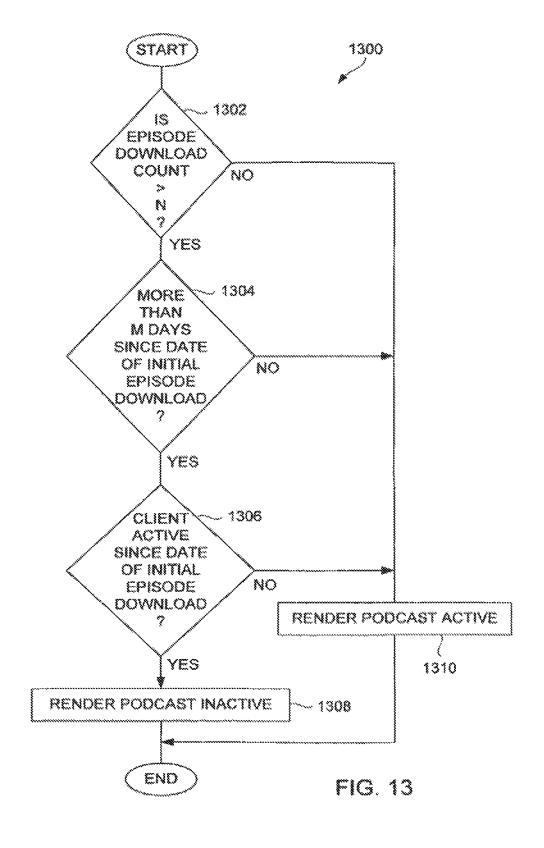



FIG. 11

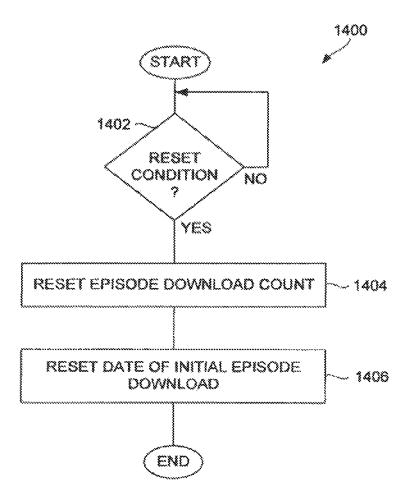


FIG. 14

TECHNIQUES AND SYSTEMS FOR SUPPORTING PODCASTING

CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of and claims priority to U.S. patent application Ser. No. 13/552,390, filed Jul. 18, 2012, entitled "TECHNIQUES AND SYSTEMS FOR SUP-PORTING PODCASTING," which in turn claims priority to 10 U.S. patent application Ser. No. 13/207,361, filed Aug. 10, 2011, entitled "TECHNIQUES AND SYSTEMS FOR SUP-PORTING PODCASTING," which in turn claims priority to U.S. patent application Ser. No. 12/477,820, filed Jun. 3, 2009, entitled "TECHNIQUES AND SYSTEMS FOR SUP- 15 podcasts on computers. PORTING PODCASTING," which issued on Sep. 20, 2011 as U.S. Pat. No. 8,020,762, which in turn claims priority to U.S. patent application Ser. No. 11/166,331, filed Jun. 25, 2005, entitled "TECHNIQUES AND SYSTEMS FOR SUP-PORTING PODCASTING," which issued on Mar. 30, 2010 20 niques that facilitate their use. The improved techniques can as U.S. Pat. No. 7,686,215, which in turn claims priority to U.S. Provisional Patent Application No. 60/683,056, filed May 21, 2005, and entitled "TECHNIQUES AND SYS-TEMS FOR SUPPORTING PODCASTING," each of the forgoing applications are hereby incorporated by reference. 25

This application is related to U.S. patent application Ser. No. 11/166,333, filed Jun. 25, 2005, and entitled "UTILIZA-TION OF PODCASTS ON PORTABLE MEDIA DEVICES," now abandoned, which is hereby incorporated by reference and U.S. patent application Ser. No. 11/166,332, 30 filed Jun. 25, 2005, and entitled "ACQUISITION, MAN-AGEMENT AND SYNCHRONIZATION OF PODCASTS," now abandoned, which is hereby incorporated by reference.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to podcasts and, more particularly, to acquiring and playing podcasts on a portable media device.

2. Description of the Related Art

A media player stores media assets, such as audio tracks, that can be played or displayed on the media player. One example of a portable media player is the iPod® media player, which is available from Apple Computer, Inc. of Cupertino, 45 Calif. Often, a media player acquires its media assets from a host computer that serves to enable a user to manage media assets. In managing media assets, a user can create playlists for audio tracks. These playlists can be created at the host computer. Media assets within the playlists can then be cop- 50 ied to the media player. As an example, the host computer can execute a media management application to create and manage media assets. One example of a media management application is iTunes® produced by Apple Computer, Inc.

Podcasts are typically used to share content from websites. 55 Podcasts are associated with Really Simple Syndication (RSS) feeds which use a lightweight XML format. A podcast can be organized into episodes much like a radio or television program. An interested person can subscribe to receive podcast episodes that are subsequently published. This is 60 achieved by the interested person using their computer to access a podcast website that hosts the RSS feed. The interested person can then subscribe the RSS feed such that their computer occasionally re-visits the podcast website to check for any new podcast episodes. Typically, if a new podcast 65 episode is available, it is downloaded to the computer. Thereafter, the interested user can play the podcast episode at their

2

computer in the same manner as other audio files (e.g. MP3 files). A utility program can be used to download the audio files to a portable media player (e.g., MP3 player). One example of such a conventional utility program is "iPodder" which is a small program that runs on one's computer to download audio files to one's portable media player.

Unfortunately, podcasts are conventionally not easily managed on host computer. Podcasts often dynamically change as new episodes are released. Management of such dynamic media assets is complicated. Additionally, to the extent that the host computer desires to support a portable media player, the host computer needs to manage the transfer of podcast data to the portable media player.

Thus, there is a need for techniques to manage and use

SUMMARY OF THE INVENTION

The invention pertains to improved podcasts and techpertain to creating, publishing, hosting, accessing, subscribing, managing, transferring, and/or playing podcasts.

According to one aspect, a client application can subscribe to podcasts and then automatically monitor the podcasts for updates. When updates to the podcasts are available (e.g., new episodes), the updates can be downloaded to the client application. However, in the event that user interest in a podcast becomes inadequate, downloading of further updates can be restricted. According to another aspect a podcast can be subscribed to through use of a portable subscription file. The portable subscription files are portable and transferable across networks, thereby providing a convenient way to facilitate subscription to podcasts. According to still another aspect, podcast feeds can be enhanced to include segment 35 elements and other metadata. The segment links and time indications can be provided for each of the segments. A client application that presents a podcast to a user can provide an improved graphical user interface through use of the segment elements and other metadata.

The invention can be implemented in numerous ways, including as a method, system, device, apparatus (including graphical user interface), or computer readable medium. Several embodiments of the invention are discussed below.

As a method for subscribing to a podcast, one embodiment of the invention includes at least the acts of: receiving a portable subscription file that is used to facilitate subscribing to the podcast; accessing the portable subscription file to obtain podcast information; and subscribing to the podcast using the podcast information.

As a computer readable medium including at least computer program code for subscribing to a podcast, one embodiment of the invention includes at least: computer program code for receiving a user selection of a portable subscription file that is used to facilitate subscribing to the podcast; computer program code for launching a media management application in response to the user selection; computer program code for parsing the portable subscription file to obtain podcast information: and computer program code for subscribing to the podcast via the media management application using the podcast information.

As a portable subscription file, one embodiment includes at least; an application identifier, and a network address for a podcast feed.

As a method for acquiring podcast information at a client application, the podcast information being acquired from a podcast hosting server via a network, one embodiment of the invention includes at least the acts of: accessing a podcast

feed front the podcast hosting server via the network to acquire episode information for the podcast; determining one or more new episodes based on the acquired episode information; determining whether the podcast is still active at the client application; and receiving, at the client application, the one or more new episodes from the podcast hosting server over the network so long as it is determined that the podcast is still active at the client application.

As a computer readable medium including at least computer program code for acquiring digital multimedia asset 10 information at a client application, the digital multimedia asset information being acquired from a digital multimedia asset hosting server via a network, one embodiment of the invention includes at least; computer program code for accessing a digital multimedia asset feed from the digital multimedia asset hosting server via the network to acquire episode information for the digital multimedia asset; computer program code for determining one or more new episodes based on the acquired episode information; computer program code for determining whether the client application 20 or a user thereof has shown adequate interest in the digital multimedia asset; and computer program code for receiving, at the client application, the one or more new episodes from the digital multimedia asset hosting server over the network so long as it is determined that the client application or a user 25 thereof has shown adequate interest in the digital multimedia

As a podcast feed, one embodiment of the invention includes a plurality of segment elements, each of the segment elements including a segment link for a multimedia element ³⁰ and a time indication associated with the segment elements.

Other aspects and advantages of the invention will become apparent from the following detailed description taken in conjunction with the accompanying drawings which illustrate, by way of example, the principles of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention will be readily understood by the following detailed description in conjunction with the accompanying 40 drawings, wherein like reference numerals designate like structural elements, and in which:

FIG. 1 is a block diagram of a media system according to one embodiment of the invention.

FIGS. 2A and 2B are flow diagrams of a podcast submis- 45 sion process according to one embodiment of the invention.

FIGS. 3A and 3B are flow diagrams of a podcast publication process according to one embodiment of the invention.

FIG. 4 is a flow diagram of an authentication process according to one embodiment of the invention.

FIG. 5A is a screenshot of a network address submission page according to one exemplary embodiment.

FIG. 5B is a screenshot of a podcast preview page according to one exemplary embodiment.

FIG. 6 is a flow diagram of a media store podcast interaction process according to one embodiment of the invention.

FIG. 7 is a flow diagram of an integrated podcast acquisition process according to one embodiment of the invention.

FIG. 8A is a flow diagram a podcast update process according to one embodiment of the invention.

FIG. 8B is a screenshot of a podcast base page according to one exemplary embodiment of the invention.

FIG. **8**C is a screenshot of a podcast page according to one exemplary embodiment of the invention.

FIG. 8D is a screenshot of the podcast page having a 65 subscribe confirmation dialog according to one exemplary embodiment of the invention.

4

FIG. **8**E is a screenshot of a podcast availability page according to one exemplary embodiment of the invention.

FIG. 8F is a screenshot of a podcast availability page according to another exemplary embodiment of the invention.

FIG. 8G is a screenshot of a podcast availability page according to another exemplary emolument of the invention.

FIG. 9 is a flow diagram of a podcast subscription file creation process according to one embodiment of the invention.

FIG. 10 is a flow diagram of a podcast subscription file usage process according to one embodiment of the invention.

FIG. 11 is a podcast subscription system according to one embodiment of the invention.

FIG. 12 is a flow diagram of a podcast update process according to one embodiment of the invention.

FIG. 13 is a flow diagram of a podcast activity process according to one embodiment of the invention.

FIG. 14 is a flow diagram of a reset activity variables process according to one embodiment of the invention.

DESCRIPTION OF THE INVENTION

The invention pertains to improved podcasts and techniques that facilitate their use. The improved techniques can pertain to creating, publishing, hosting, accessing, subscribing, managing, transferring, and/or playing podcasts.

According to one aspect, a client application can subscribe to podcasts and then automatically monitor the podcasts for updates. When updates to the podcasts are available (e.g. new episodes), the updates can be downloaded to the client application. However, in the event that user interest in a podcast becomes inadequate, downloading of further updates can be restricted. According to another aspect, a podcast can be subscribed to through use of a portable subscription file. The portable subscription files are portable and transferable across networks, thereby providing a convenient way to facilitate subscription to podcasts. According to still another aspect, podcast feeds can be enhanced to include segment elements and other metadata. The segment links and time indications can be provided for each of the segments. A client application that presents a podcast to a user can provide an improved graphical user interface through use of the segment elements and other metadata.

Embodiments of the invention are discussed below with reference to FIGS. 1-14. However, those skilled in the an will readily appreciate that the detailed description given herein with respect to these figures is for explanatory purposes as the invention extends beyond these limited embodiments.

FIG. 1 is a block diagram of a media system 100 according to one embodiment of the invention. The media system 100 includes a media store server 102 that hosts an on-line media store. The media store server 102 can off-load commerce transactions and/or delivery of purchased digital media assets to other servers, if desired. As shown in FIG. 1, the media system 100 includes one or more client devices 104 for use by end users. The client devices 104 couple to a data network 106. Additionally, the media store server 102 also couples to the data network 106. In one implementation, the data network 106 can refer to one or more data networks, typically, 60 high data-bandwidth networks, namely, wired networks, such as the Internet, Ethernet, gigabit Ethernet, and fiber optic, as well as wireless networks such as IEEE 802.11(a),(b) or (g) (WiFi), IEEE 802.16 (WiMax), and Ultra-Wide Band (UWB).

A computer program 108 (client or client application), typically a media management application (MMA) or other media player application, runs on the client device 104. One

example of a media management application is the iTunes® application, produced by Apple Computer, Inc. of Cupertino, Calif. The client devices 104 are, in general, computing devices. As an example, the client devices 104 can be specific or general-purpose personal computers (or even portable 5 media players). The client device 104 can couple to a portable media device 109 (portable media player). One example of a portable media player suitable for use with the invention is the iPod®, also produced by Apple Computer, Inc. The computer program 108 can be used by a consumer for a variety of 10 purposes, including, but not limited to, browsing, searching, acquiring and/or purchasing media assets (including podcasts) from the on-line media store provided by the media store server 102, creating and sharing media asset groups (e.g., playlists), organizing media assets, presenting/playing 15 media assets, transferring media assets between client devices 104, and synchronizing with portable media devices 109.

The media system 100 can also includes one or more client devices 110 for use by media programmers. The client 20 devices 110 also run a computer program 112, typically a media management application (MMA) or other media player application. The computer program 112 can be the same as the computer program 108, though the computer program 112 might offer additional functionality for support 25 of the media programmer. As an example, the media programmer that uses the computer program 112 might provide additional functionality for creating and publishing podcasts.

The media system 100 also includes a digital asset manager 114. The digital asset manager 114 is coupled to a media 30 assets database 116. The media assets database 116 stores media asset information including metadata relating to digital media assets available for purchase at the on-line media store. The metadata can pertain to individual media assets (digital media assets) or media asset groups (digital media asset 35 groups). Media assets can include, but are not limited to, music, video, text, and/or graphics files. One particular type of media asset or media asset group is a podcast, which often includes audio, graphics and text (but could also include video). In the case of music, a media asset group can be a 40 playlist for the music. One specific example of a type of digital media asset group is referred to as an iMixTM, which is a published playlist currently available for browsing and/or purchase on Apple Computer's iTunes® Music Store. Another specific example of a type of digital media asset 45 group is referred to as an iEssentialTM, which is a published playlist created by a media programmer and currently available for browsing and/or purchase on Apple Computer's iTunes® Music Store. Still another specific example of a type of digital media asset group is referred to as a Celebrity 50 Playlist, which is a published playlist created by a celebrity and which could be made available for browsing and/or purchase on Apple Computer's iTunes® Music Store.

The media store server 102 enables the user of a particular client device 104 to acquire media assets (e.g., podcasts). Subsequently, the client device 104 can download the media assets from the media store server 102, or some other server, via the data network 106. As will be understood by those familiar with data networks, other network configurations are possible. Furthermore, while the media store server 102 and 60 the digital asset manager 114 are shown as individual and separate devices, it will be understood by those familiar with the art that other configurations are possible. As one example, each device can be implemented such that it is distributed over multiple server computers. As another example, these 65 various servers aid/or managers can be implemented by a single physical server computer.

6

FIGS. 2A and 2B are flow diagrams of a podcast submission process 200 according to one embodiment of the invention. The podcast submission process 200 is, for example, performed by a client (e.g., application program). One example of a client is a media management application operating on a client device.

The podcast submission process 200 begins with a podcast being created 202. The podcast can be created during the podcast submission process 200 or can have been previously created. In one implementation, the podcast submission process 200 is performed by a single application, such as the media management application. In another implementation, the podcast creation can be done in one application and the podcast publication can be done in another application.

After the podcast has been created 202, a decision 204 determines whether publication has been requested. When the decision 204 determines that a publication request has not been made, the podcast submission process 200 awaits such a request. On the other hand, once the decision 204 determines that a publication request has been made, a network address (e.g., podcast feed URL) to the podcast is received 206. In one implementation, the user of the client would enter the appropriate network address into a text entry box of a graphical user interface being presented to the user by the client. The network address to the podcast is then sent 208 to a server. The server, for example, can be a media store or some other server. Thereafter, a decision 210 determines whether a podcast review page has been received. When the decision 210 determines that a podcast review page has not been received, the podcast submission process 200 awaits the receipt of the podcast review page. Alternatively, when the decision 210 determines that a podcast review page has been received, the podcast review page is displayed 212. Typically, the podcast review page includes at least basic podcast metadata pertaining to the podcast. Once the podcast review page is displayed 212, the basic podcast data can be changed (i.e., edited). In addition, the podcast review page can include one or more data entry fields that facilitate data entry pertaining to additional (or supplemental) podcast metadata that can be provided by the user.

Next, a decision 214 determines whether the user of the client desires to edit (change) the basic podcast metadata or provide additional podcast metadata with respect to the podcast preview page. When the decision 214 determines that the user does desire to edit the podcast metadata, the podcast metadata can be altered 216. As an example, the user can edit the basic podcast metadata or can enter additional podcast metadata using the data entry fields. One example additional metadata is to provide a category classification for the podcast. The additional podcast metadata can also be referred to as supplemental podcast metadata. Following the block 216, or directly following the decision 214 when altering is not been performed, a decision 218 determines whether the user has submitted the podcast metadata. Here, the submission of the podcast metadata indicates the user's acceptance of the podcast metadata, whether basic or additional podcast metadata, following any data alterations. Such podcast metadata being submitted can be referred to as final podcast metadata. Hence, when the decision 218 determines that the podcast metadata is to be submitted, the final podcast metadata is submitted 220. Typically, the final podcast metadata would be submitted 220 to a server, such as the media store server illustrated in FIG. 1.

An exemplary RSS feed for a podcast is provided immediately below. Note as discussed in greater detail hereafter the RSS feed provides categories for the channel (i.e. show) as well as for each item (i.e. chapter). For each item, an audio file (e.g. MP3 or AAC format) is identified by a URL.

8

Exemplary RSS Feed

```
<?xml version="1.0" encoding="UTF-8"?>
<!-- must include xmlns:itunes tag -->
<rss xmlns:itunes="http://www.itunes.com/DTDs/Podcast-1.0.dtd" version="2.0">
     <channel>
          <title>All About Everything</title>
          <itunes:author>John Doe</itunes:author>
          <link>http://www.itunes.com/podcasts/everything/index.html</link>
          <description>All About Everything is a show about everything. Each week we dive
into every subject known to man and talk about everything as much as we
          <itunes:subtitle>All About Everything is a show about everything</itunes:subtitle>
          <itunes:summary>All About Everything is a show about everything. Each week we
dive into every subject known to man and talk about everything as much as we can.
Look for our Podcast in the iTunes Music Store</itunes:summary>
         <language>en-us</language>
          <copyright>Acme News Corp. 2005</copyright>
               <itunes:owner>
                   <itunes:name>John Doe</itunes:name>
                   <itunes:email>johndoe@mac.com</itunes:email>
              </itunes:owner>
              <image>
         <url>http://www.itunes.com/podcasts/everything/AllAboutEverything.jpg</url>
         <title>All About Everything</title>
         <link>http://www.-.com/podcasts/everything/index.html</link>
       </image>
            <!-- the max size for rss image is 144x400 -->
            <!-- iTunes allows images larger than that -->
            <itunes:link rel="image" type="video/jpeg"
href="http://www.itunes.com/podcasts/everything/AllAboutEverything.jpg">All About
Everything</itunes:link>
       <ategory>Technology</category>
            <!-- categories can be nested for category/subcategory -->
            <!-- there can be multiple itunes categories. the first set is the primary category/
subcategory -->
            <itunes:category text="Technology">
                   <itunes:category text="Gadgets"/>
            </itunes:category>
            <itunes:category text="Politics"/>
            <itunes:category text="Technology">
                   <itunes:category text="News"/>
            </itunes:category>
    <item>
          <title>Shake Shake Your Spices</title>
            <itunes:author>John Doe</itunes:author>
          <description>This week we talk about salt and pepper shakers, comparing and contrasting pour
rates, construction materials, and overall aesthetics.</description>
          <itunes:subtitle>A short primer on table spices</itunes:subtitle>
          <itunes:summary>This week we talk about salt and pepper shakers, comparing and
contrasting pour rates, construction materials, and overall aesthetics. Come and join the
party!</itunes:summary>
          <enclosure
url="http://www.itunes.com/podcasts/everything/AllAboutEverythingEpisode3.mp3"
length="8727310" type="x-audio/mp3" />
<guid>http://www.itunes.com/podcasts/everything/AllAboutEverythingEpisode3.mp3
/guid>
          <pubDate>Wed, 15 Jun 2005 11:39:59 GMT</pubDate>
          <category>Technology</category>
         <itunes:category text="Technology">
              <itunes:category text="Gadgets"/>
          </itunes:category>
          <itunes:explicit>no</itunes:explicit>
          <itunes:duration>7:04</itunes:duration>
         <itunes:keywords>salt pepper shaker exciting</itunes:keywords>
    </item>
     <item>
          <title>Socket Wrench Shootout</title>
              <itunes:author>Jane Doe</itunes:author>
         <description>This week we talk about metric vs. old english socket wrenches. Which
one is better? Do you really need both?</description>
         <itunes:subtitle>Comparing socket wrenches is fun!</itunes:subtitle>
         <itunes:summary>This week we talk about metric vs. old english socket wrenches.
Which one is better? Do you really need both? Get all of your answers
here.</itunes:summary>
         <enclosure
url = "http://www.itunes.com/podcasts/everything/AllAboutEverythingEpisode2.mp3"
length="5650889" type="x-audio/mp3" />
<guid>http://www.itunes.com/podcasts/everything/AllAboutEverythingEpisode2.mp3
          <pubDate>Wed, 8 Jun 2005 11:20:59 GMT</pubDate>
```

-continued

```
Exemplary RSS Feed
          <category>Politics</category>
          <itunes:category text="Technology">
            <itunes:category text="Gadgets"/>

itunes:category
                                  <itunes:explicit>no</itunes:explicit>
                                  <itunes:duration>4:34</itunes:duration>
                                  <itunes:keywords>metric socket wrenches
tool</itunes:keywords>
                             </item>
                                  <title>Red, Whine, and Blue</title>
                             <itunes:author>Various</itunes:author>
                                  <description>This week we talk about surviving in a Red state if
you're a Blue person. Or vice versa.</description>
                                  <itunes:subtitle>Red + Blue != Purple</itunes:subtitle>
                                  <itunes:summary>This week we talk about surviving in a Red
state if you're a Blue person. Or vice versa. Or moving to Canada. </itunes:summary>
                                  <enclosure
url="http://www.itunes.com/podcasts/everything/AllAboutEverythingEpisode1.mp3"
length="4989537" type="x-audio/mp3" />
<guid>http://www.itunes.com/podcasts/everything/AllAboutEverythingEpisode1.mp3</
                                  <pubDate>Wed, 1 Jun 2005 10:21:04 GMT</pubDate>
                                  <category>Politics</category>
                                  <itunes:category text="Technology">
                                       <itunes:category text="Gadgets"/>
                                  </itunes:category>
                                  <itunes:explicit>no</itunes:explicit>
                                  <itunes:duration>3:59</itunes:duration>
                                  <itunes:keywords>politics red blue state</itunes:keywords>
                             </item>
                      </channel>
</rss>
```

Since shows and episodes can be associated with categories, improved user interfaces can be provided such that podcasts can be sorted, searched or browsed based on category.

FIGS. 3A and 3B are flow diagrams of a podcast publication process 300 according to one embodiment of the invention. The podcast publication process 300 is performed by a server and represents counterpart processing to that of the podcast submission process 200 illustrated in FIGS. 2A and 2B.

The podcast publication process 300 initially receives 302 a network address to a particular podcast that is to be published. For example, the network address can be provided by 45 a user of the client and then sent to the server (e.g., blocks 206 and 208 of FIG. 2A).

After the network address to the particular podcast has been received 302, the server accesses 304 a podcast fed (e.g., RSS feed) to acquire podcast feed metadata. In other words, 50 using the network address, the server connects to the podcast feed for the particular podcast to acquire podcast feed metadata. Then, basic podcast metadata is obtained 306 from the podcast feed metadata. The obtaining of the basic podcast metadata can involve parsing of the podcast feed metadata according to one implementation. Typically, the podcast feed metadata would include tags or other markers (e.g., XML elements) to distinguish different fields of metadata being provided within the podcast feed metadata.

Next, a podcast review page is created **308**. In one implementation, the podcast review page includes the basic podcast metadata and requests additional podcast metadata. The podcast review page is then sent **310** to the client.

A decision 312 then determines whether a final podcast metadata submission has been received. When the decision 65 312 determines that the final podcast metadata submission has not been received, the podcast publication process 300

awaits such a submission. On the other hand, once the decision 312 determines that the final podcast metadata has been submitted, published podcast information is stored 314 at the server. The published podcast information includes at least the network address and the final podcast metadata which are both associated with the particular podcast. At this point, the particular podcast has been published to the server. In addition, the published podcast information can be indexed 316 so as to facilitate search and/or browse capabilities at the server, such as the media store server 102 of FIG. 1. Finally, the published podcast is rendered 318 available on the server (e.g., media store). Following the operation 318, the podcast publication process 300 is complete and ends.

In another embodiment, a podcast publication process, such as the podcast publication process 300, can be modified to include an authentication process. The authentication process can be utilized to authenticate the person who is attempting to publish a podcast. The authentication can performed in a variety of different ways. In one implementation, the authentication can authenticate the person attempting to publish as being known to the server (e.g. account holder). In another implementation, the authentication can authenticate the person with reference to the podcast host, creator, etc.

Browsing or searching of media items available on a server (e.g., media store) can be performed much like searching for other types of media assets. For additional details on searching or browsing for media assets see U.S. Pat. No. 8,161,411, issued Apr. 17, 2012, and entitled "GRAPHICAL USER INTERFACE FOR BROWSING, SEARCHING AND PRESENTING MEDIA ITEMS," which is incorporated herein by reference. However, as to browsing, to facilitate efficient browsing of podcasts, a graphical user interface having a hierarchy of lists can be displayed for a user. In one implementation, a first list of selectable items will be a list of

genres. The user will select the genre denoted "Podcasts". Once the selection is made a second list of selectable items will be displayed. The selectable items in the second list are denoted "Categories". The categories are different categories that podcasts can be assigned to. Then, in response to a 5 category selection, a third list of selectable items will be displayed. The selectable items in the third list are denoted "Subcategories" and represent available subcategories of the selected category, to the extent utilized. After the various selections have been made those podcasts that match the 10 selected category and selected subcategory (if used) are displayed in a media asset listing area.

An application program window can be displayed by the client. The application program window can include a first sub-window and a second sub-window. The first sub-window includes a first region, a second region and a third region. The first region can display a list of available genre (genre list). After a user has selected one of the items within the genre list being displayed in the first region (namely, the podcast item), the second region can be populated with a list of podcast 20 categories that are associated with the selected genre from the genre list. The list of podcast categories is provided by the remote server to the application program that presents the application program window. After the user has selected one of the available categories of the second region, the third 25 region can be populated with a list of subcategories that are associated with the selected category. The subcategories within the third region, if any, are those pertaining to the selected category. When the list of subcategories has a plurality of items, the user would select one of the items. Once 30 the user has selected one if the subcategories (or categories if no subcategories), the second sub-window can be populated with a list of available podcasts that are associated with the category and subcategory (if any). The list of available podcasts can display description information for each of the 35 podcasts. For example, the list of available podcasts can be presented in a row and column (e.g., table) format with each row pertaining to a different podcast, and with the columns pertaining to podcast name, artist, description and price. Further, within the price column, each of the rows can include a 40 "Subscribe" button that allows for ease of subscripting to the particular podcast by the user.

FIG. 4 is a flow diagram of an authentication process 400 according to one embodiment of the invention. The authentication process 400 can, for example, be utilized in place of 45 the block 310 illustrated in FIG. 3A. The authentication process 400 initially determines 402 an e-mail address for an authorized user (e.g., authorized publisher). The authorized user, in one embodiment, pertains to an account holder on the server or client. In another embodiment, the authorized user 50 can be obtained from the RSS feed (i.e., podcast data) associated with the podcast to be published. In either case, an e-mail address associated with an authorized user is determined 402. After the e-mail address has been determined 402, a publication message is created 404 having a link to the 55 podcast preview page. As an example, the publication message can explain to the recipient that they are presumably in the process of publishing one of their podcasts and to select the enclosed link to continue the publishing process. In the event the publication of the podcast is not to be authorized, 60 recipient can cancel the publication process.

Thereafter, a decision 408 determines whether a request to continue the publication process has been received from the authorized user. When the decision 408 determines that a request to continue the publication process has not been 65 received, the authentication process 400 awaits such a request. In one implementation, the request is a request to

12

access a podcast preview page. The request can be made by the user by either selecting the link in the publication message or copying the link into a data entry area provided at the client. When the decision 408 determines that a request to continue the publication process has been received, the podcast review page is sent 410 to the client. Thereafter, the processing proceeds to operation 312 and subsequent operations of the podcast publication process 300 as previously discussed.

FIG. 5A is a screenshot of a network address submission page 500 according to one exemplary embodiment. The network address submission page 500 enables a user to enter a network address, namely a feed URL, to an existing podcast that is to be published on a media store, which in this example is the iTunes® Music Store. The feed URL is entered into a textbox 502. In this example, the feed URL entered is: "http://www.mygarden.com/gardentalk_rss.xml".

FIG. 5B is a screenshot of a podcast preview page 520 according to one exemplary embodiment. In this example, the title of the podcast being previewed is "Garden Talk". The podcast preview page 520 informs the user of how the podcast will be presented at the media store. Here, the podcast metadata being previewed includes; artwork, name, author, short description, long description, category and language. In this example, much of the podcast metadata being previewed can be acquired from the podcast feed itself. However, other metadata, such as category and language, that are not acquired from the podcast feed can be selected or otherwise entered by the user. Regardless, the user can be permitted to edit the podcast metadata being previewed. Additionally, a selection can be made to enable the user (publisher) to indicate whether the podcast contains explicit content. Once the user is prepared to accept the podcast metadata being previewed, the user selects the "Publish" button.

Once a podcast has been published, the podcast can become available on a media store (on-line media store). The media store can host or not host the podcast. If the media store stores all or most of the podcast content, then the podcast can be considered hosted by the media store. On the other hand, if the media store only maintains metadata for the podcast, then the media store does not host the podcast. When the media server does not host the podcast, a third-party server can host the podcast and the media store accesses the podcast feed as appropriate to acquire any data it needs. A client would access the podcast feed from the hosting server to acquire podcast data it desires to store locally. Hence, in one case the media store holds the content of the podcast, and in another the media store does not hold the content of the podcast.

The media store can be configured so that podcasts can be searched or browsed on the media store. The search or browsed functions can operate similar to searching for albums on an on-line music store. However, in the case of podcasts, the search or browse operations are with respect to podcasts that have been published to the media store. Typically, with music, browsing is achieved by a hierarchy of levels including artist, album and song. The corollary in the case of podcasts is a hierarchy of levels including podcast (or podcast category), show and episodes.

A media store can also organize podcasts into different categories to facilitate their discovery by users interacting with the media store. Examples of categories include: Arts & Entertainment, Biography and Memoir, Business, Classics, Comedy, Drama & Poetry, Fiction, History, Kids & Young Adults, Languages, Mystery, and News.

Still further, certain podcasts that have been published to the media store can be emphasized on a particular page of the media store. For example, certain podcasts can be emphasized over other using various criteria, such as randomly

chosen, ratings, most active download, sponsorship, or the like. Similarly, "new shows" or "just added" shows that have been recently made available on the media store can be emphasized. FIG. 8B discussed below provides an example of a web page provided by a media store wherein certain 5 podcasts are emphasized.

FIG. 6 is a flow diagram of a media store podcast interaction process 600 according to one embodiment of the invention. The media store podcast interaction process 600 initially accesses 602 the media store. Then, at the media store, a user can navigate 604 to a podcast of interest. The navigation can take various different forms. One example of navigation is a search process. Another example of navigation is a browse process. Still another example of navigation is a manual next entry of a network address (e.g. RSS feed URL). Regardless 15 of how the navigation occurs, once the podcast of interest is identified, a podcast page for the podcast of interest is rendered 606. The podcast page can be rendered 606 on a display (display screen) associated with a client device, such as the client device 104 illustrated in FIG. 1. A podcast page can 20 include information (e.g., metadata) pertaining to the podcast, including a description of the podcast, artwork and episodes information. The podcast page can also facilitate subscribing to the podcast or getting particular episodes. Still further, the podcast page could permit user ratings. The pod- 25 cast page might also provide a link to facilitate a user reporting some sort of concern.

After the podcast page is rendered 606, a user of the client device (client) can interact with the podcast page to make any of a number of different selections. These selections can 30 initiate operations at the client device. Two particular operations associated with podcasts are (1) subscribing to a podcast, and (2) downloading particular episodes of a podcast.

A decision 608 determines whether a subscribe selection has been made. When the decision 608 determines that a 35 subscribe selection has been made, a subscribe process 610 is performed. A subscribe process 610 operates to subscribe the client device (or client) with a host device for the podcast of interest Alternatively, when the decision 608 determines that determines whether an episodes selection has been made. When the decision 612 determines that an episode selection has been made, episode data pertaining to the episode selection is downloaded 614. Here, the episode data would be downloaded 614 to the client device. In one implementation, 45 the episode data includes at least an audio file and database content. The database content may be part of the audio file or a separate file or otherwise provided. On the other hand, when the decision 612 determines that an episodes selection has not been made, then a decision 616 determines whether another 50 selection has been made. When the decision 616 determines that another selection has been made, other processing 616 can be performed. Following the blocks 610, 614 and 618, as well as following the decision 616 when there are no other selections, a decision 620 determines whether the media store 55 podcast interaction process 600 should end. When the decision 620 determines that the media store podcast interaction process 600 should not end, the processing returns to repeat the block 604 and subsequent blocks. Alternatively, when the decision 620 determines that the media store podcast interac- 60 tion process 600 should end, then the media store podcast interaction process 600 is complete and ends.

FIG. 7 is a flow diagram of an integrated podcast acquisition process 700 according to one embodiment of the invention. The integrated podcast acquisition process 700 is per- 65 formed by a client device, such as the client device 104 illustrated in FIG. 1. More specifically, the integrated podcast

14

acquisition process 700 is performed by a media management application, such as the media management application 108 operating on the client device 104 illustrated in FIG. 1. More generally, the media management application can be referred to as a client or client application.

The integrated podcast acquisition process 700 initially discovers 702 a podcast of interest. The podcast of interest can be discovered 702 through interaction with respect to a media store, such as discussed above with respect to FIG. 6. After the podcast of interest has been discovered 702, a user or client can subscribe 704 to the podcast. Once subscribed 704 to the podcast, the client can receive 706 at least data for a most recent episode of the podcast. Although the client could receive data for other episodes, given the large number of episodes that can be present, it may be more efficient and prudent to only initially receive the most recent episode. As discussed below, the user or client will be able to request to receive other prior episodes if so desired.

Next, a decision 708 determines whether synchronization should be performed between the client and a media device. The media device has typically previously been associated with the client. When the decision 708 determines that synchronization with the media device should be performed, the episode data (for the most recent episode) can be downloaded 710 to the media device. In one embodiment, the data received includes an audio file (e.g., MP3 file or MPEG4 file or AAC file) as well as metadata pertaining thereto. At the client or client device, in one embodiment, the audio file can be stored in a file system and the metadata can be stored in a database. Following the block 710, or following the decision 708 when synchronization with the media device is not being performed, the client can be configured 712 to update for new episodes. Here, the configuration for updating can be set-up for an individual podcast or for groups of podcasts, or for all podcasts. As an example, one configuration parameter is how often to check for updates to the podcasts. Following the block 712, the integrated podcast acquisition process 700 is complete and ends.

Interestingly, in one embodiment, a single client applicaa subscribe selection has not been made, a decision 612 40 tion (e.g., media management application) operating on a client device can carry out the operations in FIG. 7. More particularly, the client application can discover a podcast, subscribe to a podcast, receive podcast data (including metadata and content), manage podcasts, and transfer podcast data to (or remove from) a media device (e.g. a portable media device, such as a media player). Still further, in another embodiment, the client application can also include a podcast creation or authoring capabilities. This high degree of integration enables improved operation as well as greater ease of use and greater user satisfaction.

FIG. 8A is a flow diagram a podcast update process 800 according to one embodiment of the invention. The podcast update process 800 generally determines when and how any podcast is updated at a client so as to obtain any new episodes associated with the podcast.

The podcast update process 800 begins with a decision 802 that determines whether a podcast update is to be performed. The podcast update can, for example, be determined based on the configuration 712 for update provided in FIG. 7. When the decision 802 determines that a podcast update has not been performed, the podcast update process 800 is deferred. Once the decision 802 determines that a podcast update is to be performed, existing podcast subscriptions are identified 804. Here, it is assumed that the podcast update process 800 is commonly performed for a group or all of the podcasts residing on the client. Once the existing podcast subscriptions have been identified 804, a first podcast is selected 806. The pod-

cast host for the selected podcast is accessed **808**. The podcast host is typically a third-party server that provides the RSS podcast feed. However, the podcast host can also be the media store, if the media store is hosting the podcast.

Next, data for any newer episodes of the podcast are 5 received **810**. The data for the newer episodes of the podcast can be received from the podcast host. For example, though examination of the RSS podcast feed, any newer existing episodes can be identified and then downloaded. The client can maintain data indicating which episodes is already has 10 received.

Thereafter, a decision **812** determines whether there are more podcasts (i.e., identified podcasts) to be updated. When the decision **812** determines that there are more podcasts to be updated, the podcast update process **800** returns to repeat the 15 block **806** and subsequent blocks. When the decision **812** determines that there are no more podcast to the updated, a decision **814** determines whether synchronization with a media device should be performed. When the decision **814** determines that synchronization with a media device should 20 be performed, episode data (new episode data) can be downloaded **816** to the media device. Following the block **816**, or following the decision **814** when synchronization is not being performed, the podcast update process **800** ends.

FIGS. 8B, 8C and 8D are screenshots associated with presentation of podcasts on an on-line media store. In this example, the on-line media store is the iTunes® Music Store, which also provides capabilities to browse and search for podcasts.

FIG. 8B is a screenshot of a podcast base page 820 according to one exemplary embodiment of the invention. A source indicator 822 indicates that the podcast base page 820 is provided by the on-line media store. A selector 824 also indicates that "podcasts" is the type of media being presented. An emphasis area 826 contains artwork associated with three different podcasts by emphasized. The podcast base page 820 also includes a daily top download area 828 that identifies those top download podcasts for the day. The podcast base page 820 also includes some grouping of podcasts, such groupings as New Shows 830, Just Added 832, and featured 40 podcasts 836. These groupings can be displayed with a scroll window that can transition (e.g., horizontally) in accordance with a transition effect. The podcast base page 820 further includes another emphasis area 834.

Once a particular podcast is selected, a podcast page is 45 presented. FIG. 8C is a screenshot of a podcast page 838 according to one exemplary embodiment of the invention. The podcast page 838 includes a metadata region 840 and an episode listing area 842. The metadata region 840 includes pod cast artwork 844, podcast title 846, and other metadata 50 information 848 (e.g., total episodes, category, language, and copyright information. A "Subscribe" button 850 is also displayed. In addition, the metadata region 840 also includes a description 852 for the podcast. The episode listing area 842 contains a list 854 of episodes of the podcast that are avail- 55 able. Each of the episodes in the list 854 includes a "Get Episode" button 856 to obtain the corresponding episode. By selecting the "Subscribe" button 850, the user can cause the media management application to subscribe to the podcast. In this example, there is no cost to subscribe to the podcast. 60 However, in other embodiments, there can be a charge imposed to subscribe to a podcast. By selecting the "Get Episode" button 856, the user can cause the media management application to obtain the particular episode.

FIG. 8D is a screenshot of the podcast page 838 having a 65 subscribe confirmation dialog 858 that permits the user to confirm that they want to subscribe to the podcast.

16

FIG. 81 is a screenshot of a podcast availability page 860 according to one exemplary embodiment of the invention. The podcast availability page 860 includes an indicator 862 that indicates that podcasts are to be listed in a media asset list 864. The podcasts are listed in the media asset list 864 can include sublistings of episodes. These podcasts listed in the media asset list 864 are resident on a client device. Typically, these podcasts were previously downloaded from the appropriate hosting server to the client device. Indicators 866 can be used to visually identify those of the podcasts being listed that are available from the on-line media store. For example, the indicators 866 can identify those podcasts that are hosted on the on-line media store. By selecting any of the episodes, the associated audio can be played for the user. A selector 868 indicates that the episode entitle "Additional Shopping" is being played for the user, with the associated artwork 869 of the podcast, episode or chapter being displayed.

FIG. 8F is a screenshot of a podcast availability page 870 according to another exemplary embodiment of the invention. The podcast availability page 870 includes a media asset list 871 similar to the media asset list 864 of FIG. 8E. In this example, the media asset list includes episodes 872 that are not able to be played because the episode data has not been downloaded to the client device. In this example, these episodes 872 are shown highlighted and with "Get" buttons 874. On selection of a "Get" button 874, the corresponding episode 872 would be acquired from the appropriate hosting server.

In general, when listing of podcasts provided by the media store or available locally via a client machine, the listing can be organized in a variety of different ways. One example of a listing organization is to sort the podcasts in accordance with ratings. For additional information on use of ratings with respect to a media store, see (i) U.S. patent application Ser. No. 11/114,914, filed Apr. 25, 2005, and entitled "PUBLISHING, BROWSING, RATING AND PURCHASING OF GROUPS OF MEDIA ITEMS"; and (ii) U.S. Pat. No. 7,860, 830, issued Dec. 28, 2010, and entitled "PUBLISHING, BROWSING AND PURCHASING OF GROUPS OF MEDIA ITEMS."

FIG. 8G is a screenshot of a podcast availability page 876 according to another exemplary embodiment of the invention. The podcasts listed in the podcast availability page 876 are similar to those listed the podcast availability page 870 illustrated in FIG. 8F. The podcast availability page 876 illustrates indicators 878 that visually identify those episodes of a podcast that in the process of being downloaded to the client device. Here, the episodes being downloaded are listed as existing but not yet present on the client device. Once the download of these episodes begins, the indicators 878 are displayed. After the episodes have been downloaded, the indicators 878 as well as any highlighting are removed.

As noted above, following initial subscription to a podcast, the podcast needs to be updated to acquire new episodes. To provide efficiency and intelligence in the manner of seeking such updates, the client (e.g., media management application) can use preference settings to bias or determine when updates are to be performed. These preference settings can be provided for all podcasts globally or on an individual podcast basis. For example, preference settings can indicate to check for new episodes periodically (e.g., hourly, daily, weekly) or whenever the client is launched.

Once the episodes of the podcasts have been stored at the client device, some or all of the episodes can be copied to a portable media player that can operatively connect to the client device. To provide efficiency and intelligence in the manner of performing such copying (also known as synchro-

nization), the client (e.g., media management application) can use preference settings to bias or determine when copying is to be performed (namely, automatically performed). These preference settings can be provided for all podcasts globally or on an individual podcast basis. The preferences can vary with implementation. Some examples of preferences include: (1) remove episode after it has been listened to on client device, (2) remove episode after it has been listened to on portable media device, (3) retain/download in most recent episodes, (4) retain/download up to n episodes, and (5) retain/download based on dates.

In one exemplary embodiment, a synchronization preference screen can be available to a user. The synchronization preference screen enables a user to set certain synchronization preferences for copying updates to podcasts from a client device to a portable media device. In particular, as an example, a user can choose to; (1) automatically update all podcasts, (2) automatically update only selected podcasts, (3) manually manage podcasts (i.e., no automatic updating), and (4) delete podcasts from the portable media player after they have been played. Other criteria (not shown) that could be used includes download up to n episodes and/or download only those of the episodes not yet listened to. For example, if a particular episode was listened to at the client device, it is likely that the user may not want to download that episode to the portable media device.

Note that by deleting those podcasts that have been listened to from the portable media player, the portable media player can maintain only those of the podcast episodes that the user has not yet listened to. Here, the removal of the episodes that have been played is automatic. In one embodiment, an episode can be deemed played if substantially all of the podcast episode has been played. For example, an episode can be deemed as having been played if 95% of the episode has been played.

Another aspect of the invention pertains to improved approaches to enable subscription to podcasts. In one embodiment, small, portable electronic files referred to as 40 podcast subscription files can be used to facilitate easy subscription to podcasts. Indeed, in one implementation, by simply selecting or opening a podcast subscription file (e.g., double-clicking on it), subscription can be completely carried out in an automated manner.

FIG. 9 is a flow diagram of a podcast subscription file creation process 900 according to one embodiment of the invention. The podcast subscription file creation process 900 is, for example, performed by a client (client program), such as a media management application. The podcast subscription file creation process 900 initially creates 902 a portable podcast subscription file is an electronic file that contains information that facilitates subscription to a podcast. After the portable podcast subscription file has been created 902, the portable podcast subscription file is made 904 available to others. The portable podcast subscription file can thereafter distributed, as desired, and then used to facilitate subscribing to the podcast.

In one embodiment, the portable podcast subscription file is an XML document (or other markup language type document) that includes podcast information that facilitates subscription to the podcast. As an example, the podcast information within the XML document includes at least a feed URL for the podcast feed. Additionally, the podcast information may include other descriptive information concerning the 65 podcast, such as title and description. A representative example of a portable podcast subscription file is as follows:

18

<description>I talk about random things.</description>

Note that the link named "feed" is associated with a URL (feed URL) that points to a podcast feed (e.g. "myfeed"). This portable podcast subscription file also includes a title ("My Podcast") and a description ("I talk about random things") for the associated podcast. The XML format is a markup language format using tags to distinguish the different data items within the document.

FIG. 10 is a flow diagram of a podcast subscription file usage process 1000 according to one embodiment of the invention. The podcast subscription file usage process 1000 is, for example, performed by a client, such as a media management application, operating on a client device.

The podcast subscription file usage process 1000 initially obtains 1002 a portable podcast subscription file (PPSF). The portable podcast subscription file can be obtained 1000 in advance of other processing performed by the podcast subscription file usage process. That is, a decision 1104 determines whether a request to open the portable podcast subscription file has been made. For example, the request to open can signal an OpenURL event. When the decision 1004 determines that a request to open a portable podcast subscription file has not been made, the podcast subscription file usage process 1000 simply awaits such a request.

Once the decision 1004 determines that a request to open a portable podcast subscription file has been made, a decision 1006 determines whether a media management application (MMA) is running. Typically, the media management application would be running on a client device. When the decision 1006 determines that the media management application is not currently running, then the media management application is launched 1008. Following the block 1008, or following the decision 1006 when the media management application is determined to be running, the portable podcast subscription file is parsed 1010 to acquire at least a feed URL, to the associated podcast. In one implementation, the request to open the portable podcast subscription file can be a URL scheme ("itpc" or "pcast") that is recognized by the media management application as an XML document to be parsed and used to subscribe to a podcast.

Next, the podcast subscription file usage process 1000 subscribes 1012 to the associated podcast. The subscription 1012 to the associated podcast can be automatically performed without any feedback or input from a user of the media management application. However, if desired, additional processing can be performed to display descriptive information concerning the podcast and/or to query the user as to whether they want to subscribe. In other words, the user can confirm that they desire to subscribe to the associated podcast and/or the user can receive additional information concerning the podcast (e.g., title, description, etc.) for which they are about to subscribe. Regardless, following the block 1012, the podcast subscription file usage process 1000 ends.

FIG. 11 is a podcast subscription system 1100 according to one embodiment of the invention. The podcast subscription system 1100 includes a client device A 1102, a client device B 1104, and a podcast host server 1106, each of which operatively connects to a data network 1008. The client device B 1102 includes a media management application (MMA) 1110, and the client device B 1104 includes a media management application (MMA) 1112. The client device A 1102

creates or otherwise acquires a portable podcast subscription file **1114**. The portable podcast subscription file **1114** can be transferred to one or more other client devices. In this example, the portable podcast subscription file **1114** can be assumed to be created by the media management application 5 **1110**.

Once the media management application 1110 has the portable podcast subscription file, the media management application 1110 can transfer the portable podcast subscription file 1114 through the data network 1108. In this example, 10 it is assumed that the portable podcast subscription file 1114 is transferred through the data network 1108 to that media management application 1112 of the client device B 1104. Hence, as shown in FIG. 11, the portable podcast subscription file 1114 is shown in a dashed box within the client device B 15 1104.

Thereafter, the media management application 1112 of the client device B 1104 can utilize the portable podcast subscription file 1114 to subscribe to an associated podcast. More particularly, if a user of the client device B 1104 were to 20 "open" the portable podcast subscription file 1114, such as by a double-click action, the media management application 1112 would process the "open" request as a request to subscribe the media management application 1112 to the podcast. In this example, the podcast resides on the podcast host 25 server 1106. In particular, the portable podcast subscription file 1114 would be parsed by the media management application 1112 to obtain a feed URL to a podcast feed 1116 for the podcast which reside on the podcast host server 1106. The media management application 1112 can then access the 30 podcast feed 1116 to acquire and then store certain podcast information at the client device B 1104.

It should be understood that, in general, a portable podcast subscription file (e.g., a portable podcast subscription file 1114) can be transferred to one or more other client devices in 35 a variety of different ways. For example, the portable podcast subscription file can be sent via an electronic-mail message to a user associated with a client device. The user can then open the portable podcast subscription file to activate the subscription to the podcast. In another example, the portable podcast 40 subscription file can be associated with a link on a web page. Then, when a user at the web site selects the link associated with a web page, the portable podcast subscription file can be downloaded to the client device associated with the user and then processed by the media management application to sub- 45 scribe to the podcast. In still another example, the portable podcast subscription file can be transferred by a portable computer readable medium, such as a flash memory card on a floppy disk, or compact disc.

Another aspect of the invention pertains to deactivating 50 subscriptions to podcasts. More particularly, this aspect of the invention deactivates subscriptions that are deemed inactive. In one embodiment, the deactivation process can be automatically performed. One advantage of deactivating subscriptions that are deemed inactive is that network bandwidth can be 55 conserved. Another advantage of deactivating subscriptions that are deemed inactive can be that a host server hosting the podcast is not burdened with download requests from client applications whose users having little or no interest in the podcast.

FIG. 12 is a flow diagram of a podcast update process 1200 according to one embodiment of the invention. The podcast update process 1200 is, for example, performed by a client, such as a media management application.

The podcast update process 1200 begins with a decision 65 1202 that determines whether a podcast update is to be performed. When the decision 1202 determines that a podcast

20

update is to not be performed, then the podcast update process 1200 waits until a podcast update is to be performed. In other words, the podcast update process 1200 is effectively invoked when a podcast update is to be performed. A podcast update can be requested by a client or a user of the client. For example, the client might periodically automatically initiate a podcast update.

On the other hand, when the decision 1202 determines that a podcast update is to be performed, then a podcast feed (e.g., RSS feed) for a particular podcast is accessed 1204 to acquire episode information for the podcast. Then, new episodes for the podcast are determined 1206 based on the acquired episode information. In one implementation, the acquired episode information is an XML file that contains metadata describing characteristics of the particular podcast, including the various episodes of the podcast. The XML file can be parsed to obtain episode information (e.g. episode metadata). An examination of the episode information can serve to identify the new episodes of the podcast as compared to those episodes that are either older in time or already previously made available at the client.

Next, a decision 1208 determines whether there are new episodes of the podcast to download. Here, the new episodes are available from the host server for the podcast and are thus available to be downloaded to the client. When the decision 1208 determines that there are new episodes to be downloaded, the podcast update process 1200 determines 1210 whether the podcast is inactive. When the decision 1212 determines that the podcast is not inactive, then the new episodes are downloaded 1214 to the client. After the new episodes have been downloaded 1214, the podcast update process 1200 is complete and ends with the client having received a podcast update. On the other hand, when the decision 1208 determines that there are no new episodes to download, or when the decision 1212 determines that the podcast is inactive, then the podcast update process 1200 is complete and ends without having downloaded any new episodes.

FIG. 13 is a flow diagram of a podcast activity process 1300 according to one embodiment of the invention. The podcast activity process 1300 is generally utilized to determine whether a podcast is either active or inactive. As an example, the podcast activity process 1300 can be utilized as the processing performed by the determination 1210 illustrated in FIG. 12, according to one embodiment of the invention. In this embodiment, at least a pair of variables is maintained for each podcast (that has been subscribed to) to facilitate the determination of whether the podcast is active or inactive. In this exemplary embodiment, the variables are an episode download count and a date of initial episode download.

The podcast activity process 1300 begins with a decision 1302 that determines whether an episode download count is greater than an integer N. When the decision 1302 determines that the episode download count is greater than N, a decision 1304 determines whether more than M days have passed since the date of initial episode download, where M is an integer. For example, the integers M and N can equal five (5). When the decision 1304 determines that more than M days have passed since the date of the initial episode download, a decision 1306 determines whether the client has been active since the date of initial episode download. When the decision 1306 determines that the client has been active since the date of initial episode download, the podcast is rendered 1308 inactive. Here, in this embodiment, the podcast is rendered 1308 inactive because the podcast activity process 1300 has programmatically determined that there has been insufficient activity with respect to the podcast. Consequently, it is presumed that the user of the client has little or no interest in the

podcast. As a result, the download 1214 of new episodes by the podcast update process 1200 of FIG. 12 is bypassed, thereby conserving network and server resources.

On the other hand, when the decision 1302 determines that the episode download count is not greater than N, or when the 5 decision 1304 determines that there are not more than M days since the date of the initial episode download, or when the decision 1306 determines that the client has not been active since the data initial episode download, then the podcast is rendered 1310 active. Following the blocks 1308 and 1310, 10 the podcast activity process 1300 is complete and ends.

FIG. 14 is a flow diagram of a reset activity variables process 1400 according to one embodiment of the invention. The reset activity variables process 1400 is, for example, performed by the client operating on a client device. The 15 client operates to reset activity variables at appropriate times during its operation so as to impact the podcast activity process 1300 described above with respect FIG. 13. In other words, at certain times, the activity variables utilized by the podcast activity process 1300 can be reset to affect the operation of the podcast activity process 1300. For example, the activity variables being reset can include an episode download count or a date of initial episode download. Note that these reset variables can directly affect the decisions 1302, 1304 and 1306 of the podcast activity process 1300.

The reset activity variables process 1400 begins with a decision 1402 that determines whether a reset condition has been established. The reset condition can be established in a variety of different ways. The reset condition can be initiated automatically or by a user. In any case, when the decision 30 **1402** determines that a reset condition does not exist, then the recent activity variables processed 1400 awaits such a condition. In other words, the reset activity variables processed 1400 begins when an appropriate reset condition has been reached. Once the decision 1402 determines that the appro- 35 priate reset condition has been reached, the episode download count is reset 1404. Here, the episode download count can be reset 1404 to zero. In addition, the date of initial episode download is reset 1406. Here, the date of the initial episode can be reset 1404 to the current date. Following the block 40 1406, the reset activity variables process 1400 is complete

Although the reset condition can be established in a variety of ways, when programmatically or user initiated, events occurring on the client can cause the reset condition. In general, the reset condition is programmatically triggered when the client understands the client, or the user of the client, to have expressed interest in the podcast. Examples of events that express an interest in the podcast are: (1) user plays an episode of the podcast, (2) client (or portable media player) 50 completes playing of an episode of the podcast, and (3) user downloads an episode of the podcast.

Another aspect of the invention pertains to chapter enhancements to podcasts. The chapter enhancements can provide an improved user interface for use with podcasts. The chapter enhancements are enabled by podcasts containing chapter information. For example, the chapter information can be displayed in various ways to enhance the playback experience.

The chapter information can include, but is not limited to: 60 title, picture, url, description (e.g., in rich text, including embedded links), movies (audio & video), artist, album, and podcast subscriptions. All chapter information is optional—e.g., some chapters may have titles and pictures and other chapters may only have a title.

Podcasts can carry chapter information either embedded in the file (e.g., XML file) or carried in the podcast fed.

22

To embed chapter information into a file, a m4a file format can be extended to support the additional chapter information. The track information is formatted according to ISO file formats. A track, marked as a chapter track, can contain the chapter information. The tracks can be name tracks, url tracks, picture tracks, description tracks, or other metadata tracks. At the start of any of the chapters, the chapter information included within the user interface can be changed so as to correspond with the chapter.

To provide chapter information in the podcast feed, the podcasts, namely the RSS feeds for podcasts, can be enhanced to include chapter related information. This chapter related information can be specified by newly specified XML elements. (e.g., chapter tags). A client application, e.g., media management application, that understands these XML elements can retrieve the chapter related information from RSS feeds and thus provide an enhanced user interface at a client device (or a portable media device associated with the client device). The chapter related information can be text, audio, images and/or video. In the event that the client application does not understand the newly specified chapter elements, the RSS feed is still otherwise useable, though without the user interface enhancements.

In one embodiment, the newly specified XML elements are: (i) a segment element which acts as a container element signaling a segment (i.e., chapter); and (ii) a link element—one or more of these defining multimedia elements (pictures, auxiliary audio, auxiliary video) associated with the segment. Each segment can have a start time, title, and URL to a multimedia element. For example, at the start time, the title and multimedia element are displayed. Each segment can also contain other metadata for the segments of the podcast (e.g., author, track, related URL link).

An exemplary RSS feed with three (3) chapters is:

```
<segment xmlns:it="http://www.itunes.com/ext/chapters/1.0>
     <it:starttime>0</it:starttime>
     <it:title>Introduction</it:title>
     <it:link rel="enclosure" type="video/JPEG"
href="http://foo.com/chapter1picture.jpg"/>
     <it:link rel="related"
     href="http://foo.com/infoAboutChapter1.html" />
</segment>
<segment xmlns="http://www.itunes.com/ext/podcasts/1.0>
     <it:starttime>0:30</it:starttime>
     <it:title>Music segment one</it:title>
     <it:link rel="enclosure" type="video/JPEG"
href="http://foo.com/chapter2picture.jpg"/>
     <it:link rel="related"
     href="http://foo.com/infoAboutChapter2.html"/>
     <it:author>Some Great Band</it:author>
     <it:track>My Great Hit</it:track>
</segment>
<segment xmlns="http://www.itunes.com/ext/podcasts/1.0>
     <it:starttime>0:30</it:starttime>
     <it:title>Music segment one</it:title>
     <it:link rel="enclosure" type="video/JPEG"
     <it:link rel="related"
     href="http://foo.com/infoAboutChapter2.html"/>
     <it:link rel="feed" href="itpc://foo.com/podcasts/myfeed.xml" />
     <it:author>Some Great Band</it:author>
     <it:track>My Great Hit</it:track>
```

The user interface enhancements (for a client application or portable media device) facilitated by the existence of chapter information can include any of the following example. As one example, a chapter picture can be shown as related to the chapter of the podcast. As the podcast is played, the chapter picture automatically changes to correspond to the current

chapter. The chapter picture may also change as the user jumps (e.g., scrubs) from chapter to chapter when navigating through the chapters. An another example, when a user selects a popup menu to select a chapter, each menu item in the popup menu contains a chapter title and also a thumbnail of the 5 chapter picture. As still another example, when a user selects (e.g., clicks on) a chapter picture, the client application links (hyperlinks) to a chapter URL. In yet another example, the chapter information can vary as the chapter changes. Here, chapter artist, show, description and other information can be displayed in various parts of the user interface such that it can changes as the chapter changes. In still yet another example, a subscription link can be utilized as chapter information. If the subscription link is selected, the client application will $_{15}$ automatically subscribe to the podcast feed. In one embodiment, the subscription link can point to a portable subscription file.

Although the media assets (or media items) of emphasis in several of the above embodiments were podcasts, which include audio items (e.g. audio files or audio tracks), the media assets are not limited to audio items. For example, the media assets can alternatively pertain to videos (e.g., movies) or images (e.g. photos). More generally, podcasts can also be referred to as digital multimedia assets.

The various aspects, embodiments, implementations or features of the invention can be used separately or in any combination.

The invention is preferably implemented by software, but can also be implemented in hardware or a combination of hardware and software. The invention can also be embodied as computer readable code on a computer readable medium. The computer readable medium is any data storage device that can store data which can thereafter be read by a computer system. Examples of the computer readable medium include read-only memory, random-access memory, CD-ROMs, DVDs, magnetic tape, optical data storage devices, and carrier waves. The computer readable medium can also be distributed over network-coupled computer systems so that the computer readable code is stored and executed in a distributed fashion.

The many features and advantages of the present invention are apparent from the written description and, thus, it is intended by the appended claims to cover all such features and advantages of the invention. Further, since numerous modifications and changes will readily occur to those skilled in the art, the invention should not be limited to the exact construction and operation as illustrated and described. Hence, all suitable modifications and equivalents may be resorted to as falling within the scope of the invention.

What is claimed is:

1. A method comprising:

playing a podcast episode having a plurality of segments, the podcast episode being associated with chapter information comprising start times of the segments and identifications of multimedia items associated with the segments;

displaying a first multimedia item associated with a first segment as the first segment is played, the first multimedia item identified at least partially based on the start time associated with the first segment; and

displaying a second multimedia item associated with a second segment as the second segment is played, the second multimedia item identified at least partially 65 based on the start time associated with the second segment.

24

- 2. The method of claim 1 wherein each of the multimedia elements includes an associated picture that is displayed when the associated segment is played.
 - 3. The method of claim 1 further comprising: receiving a podcast feed;

accessing the podcast episode using a first link provided in the podcast feed, wherein the podcast episode is accessed before it is played;

accessing the first multimedia item using a second link provided in the podcast feed;

accessing the second multimedia item using a third link provided in the podcast feed.

4. The method of claim 3 further comprising:

- displaying the first multimedia item at a first time indicated in the podcast feed; and displaying the second multimedia item at a second time indicated in the podcast feed.
- 5. The method of claim 1 further comprising:

while the first segment is played:

receiving, from a user, an indication to access the second segment; and

in response, accessing the second multimedia item.

6. The method of claim **1**, the device also configured for: while the first segment is played:

receiving, from a user, an indication to access the second segment; and

in response, accessing the second multimedia item.

7. A computer readable storage device storing instructions that, when executed by a computer system, cause the computer system to carry out operations comprising:

playing a podcast episode having a plurality of segments, the podcast episode being associated with chapter information comprising start times of the segments and identifications of multimedia items associated with the segments:

displaying a first multimedia item associated with a first segment as the first segment is played, the first multimedia item determined at least partially based on the start time associated with the first segment; and

displaying a second multimedia item associated with a second segment as the second segment is played, the second multimedia item determined at least partially based on the start time associated with the second segment.

- intended by the appended claims to cover all such features and advantages of the invention. Further, since numerous modifications and changes will readily occur to those skilled in the art, the invention should not be limited to the exact black of the multimedia elements includes an associated picture that is displayed when the associated segment is played.
 - **9**. The computer readable storage device of claim **7**, the operations further comprising:

receiving a podcast feed;

accessing the podcast episode using a first link provided in the podcast feed, wherein the podcast episode is accessed before it is played;

accessing the first multimedia item using a second link provided in the podcast feed;

accessing the second multimedia item using a third link provided in the podcast feed.

10. The computer readable storage device of claim 9, the operations further comprising:

displaying the first multimedia item at a first time indicated in the podcast feed; and displaying the second multimedia item at a second time indicated in the podcast feed.

11. The computer readable storage device of claim 7, the operations further comprising:

while the first segment is played:

receiving, from a user, an indication to access the second segment; and

in response, accessing the second multimedia item.

12. A system comprising:

a device configured for:

- playing a podcast episode having a plurality of segments, the podcast episode being associated with chapter information comprising start times of the segments and identifications of multimedia items associated with the seg-
- displaying a first multimedia item associated with a first segment as the first segment is played, the first multimedia item determined at least partially based on the start time associated with the first segment; and
- displaying a second multimedia item associated with a second segment as the second segment is played, the 15 second multimedia item determined at least partially based on the start time associated with the second segment.
- 13. The system of claim 12 wherein each of the multimedia elements includes an associated picture that is displayed 20 wherein determining whether the podcast is active includes when the associated segment is played.
 - 14. The system of claim 12, the device also configured for: receiving a podcast feed;
 - accessing the podcast episode using a first link provided in the podcast feed, wherein the podcast episode is 25 accessed before it is played;
 - accessing the first multimedia item using a second link provided in the podcast feed;
 - accessing the second multimedia item using a third link provided in the podcast feed.

26

- 15. The system of claim 14, the device also configured for: displaying the first multimedia item at a first time indicated in the podcast feed; and displaying the second multimedia item at a second time indicated in the podcast feed.
- 16. A computer readable storage device storing instructions that, when executed by a computer system, cause the computer system to carry out operations comprising:
 - accessing at the client device episode information for a podcast; and
 - updating the podcast at the client device with a new episode if it is determined from the episode information that the new episode of the podcast exists.
- 17. The computer readable storage device of claim 16, the operations further comprising:

determining whether the podcast is active.

- 18. The computer readable storage device of claim 17, wherein
 - determining whether the podcast is active includes determining whether a user is interested in the podcast.
- 19. The computer readable storage device of claim 17, determining whether an episode download count is greater than a threshold amount.
- 20. The computer readable storage device of claim 17, wherein determining whether the podcast is active includes determining whether a threshold number of days have elapsed since a date of an initial episode download.
- 21. The computer readable storage device product of claim 16, wherein the episode information is included in a portable subscription file that is stored at the client device.

UNITED STATES PATENT AND TRADEMARK OFFICE **CERTIFICATE OF CORRECTION**

PATENT NO. : 9,104,289 B2 Page 1 of 1

APPLICATION NO. : 14/029436

DATED : August 11, 2015

INVENTOR(S) : Anne Jones et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

On the title page, item 63 (Related U.S. Application Data), Line 2; Delete "8,561,893," and insert -- 8,646,687, --, therefor.

Signed and Sealed this Fifth Day of January, 2016

Michelle K. Lee

Michelle K. Lee

Director of the United States Patent and Trademark Office